If it's not what You are looking for type in the equation solver your own equation and let us solve it.
22a^2-6.25a-0.35=0
a = 22; b = -6.25; c = -0.35;
Δ = b2-4ac
Δ = -6.252-4·22·(-0.35)
Δ = 69.8625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6.25)-\sqrt{69.8625}}{2*22}=\frac{6.25-\sqrt{69.8625}}{44} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6.25)+\sqrt{69.8625}}{2*22}=\frac{6.25+\sqrt{69.8625}}{44} $
| -q/10=8 | | -22a^2+6.25a+0.35=0 | | 7.5(n+.2)=189 | | 4m=40+3m-1 | | -p/10=12 | | s+3.4=8.3 | | 5=j/6-4 | | 3x+4.5=19.5 | | r-10/2=-6 | | X=15x-45 | | 6(w+9)=54 | | 6(w-9)=54 | | 6p+34=16 | | 1/2(2y-2)=4-3y | | 6(j-9)=0 | | 36x=12+12x | | 11w/3=22 | | 1/3(t-3)=27 | | 3(j-15)=-21 | | x+30/7=5 | | 5(p+6)=50 | | 5(p+60)=50 | | 5(p+60=50 | | 7x-18=2x+11 | | -3(10+2a)=52 | | X+1=(-x)+(-5) | | 9w+7=169 | | -9(23-8b)=-567 | | −2v²−v+12=−3v²+6v | | −2v2−v+12=−3v²+6v | | −2v2−v+12=−3v2+6v | | u+14/4=5 |